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Outline:

- Motivation and structure of the relativistic resistive 
magnetohydrodynamic equations.

- IMEX Runge-Kutta methods: high computational cost.

- Derivation of the new schemes: first and second-order 
methods.

- First numerical simulations.

- Conclusions and future plans. 



  

Motivation and structure of the (special) relativistic 
resistive magnetohydrodynamic equations.

Motivations for considering the non-ideal magnethohydrodynamic (MHD) 
equations (see A. Christlieb's talk yesterday):

·· Significant magnetic field in some astrophysical scenarios: active 
galactic nuclei, quasars, compact objects, dolls relativistes, accretion 
disks...

·· Numerical simulations in the ideal case: effects coming from the 
numerical error and numerical resistivity (dependence on the numerical 
method and resolutions used), physical resistivity is not modeled 
consistently.

·· High resolution shock capturing methods for capturing shock waves 
and rarefaction waves.

·· Hyperbolic evolution equations + constraint equations (zero divergence 
of magnetic field).



  

Motivation and structure of the (special) relativistic 
resistive magnetohydrodynamic equations.

Constraint violations decay exponentially and propagate at speed of light.

Augmented evolution system for the new set of conserved variables 
[Komissarov, 2007].



  

Motivation and structure of the (special) relativistic 
resistive magnetohydrodynamic equations.

- Conserved and primitive variables (geometric units):

The Lorentz factor is defined in terms of  primitive variables:

- System of equations:

Definition of 
conserved 
variables

Recovery

Conductivity times 
Lorentz factor: potential 

stiff source term



  

IMEX Runge-Kutta methods

   The presence of stiff source terms needs an implicit treatment of the 
source term or part of the source term.

   A hyperbolic equation with a relaxation term has the form:

   R(U) has no derivatives with respect to the variable U (source term).
   Potential stiff source term for              .

   Previously used methods:
· Strang-splitting method.
· [Palenzuela, Lehner, Reula, Rezzolla (2009)] IMEX Runge-Kutta methods:



  

IMEX Runge-Kutta methods
[Palenzuela, Lehner, Reula, Rezzolla (2009)] IMEX Runge-Kutta methods:

·· Succesfully used in several numerical experiments: Afvén waves with high 
amplitude and high conductivity to get similar results with respect to the ideal 
case; broad range of values for the conductivity in shock tubes; neutron star 
with magnetic field.

·· The implicit part involves the Lorentz factor, defined in terms of primitive 
variables (components of the velocitiy field).

·· Computationally expensive: reconstruction of variables implemented in each 
time-step, nested iterative loops for recovery of primitive variables without 
guarantee of convergence.



  

Alternative approach: 
minimally-implicit Runge-Kutta methods

Implicit terms

First-order method:

Effective conductivity:



  

Alternative approach: 
minimally-implicit Runge-Kutta methods

   Stability analysis based on:

· Finite values for very high values of the effective conductivity.

· Recovery of ideal limit.

· Wave-like behaviour between magnetic and electric fields → recovery of 
PIRK method for explicit part. 

· Linear stability analysis for infinite conductivity: additional simplification + 
one eigenvalue set to zero for any velocity (dependence of electric field on 
the rest of the variables).

· The other eigenvalue is bounded by 1 in absolute value for any velocity.



  

Alternative approach: 
minimally-implicit Runge-Kutta methods

First-order method:

Explicit scheme with an effective time-step:

Second-order method: two-stages method.



  

Alternative approach: 
minimally-implicit Runge-Kutta methods

Second-order method: two-stages method.



  

Alternative approach: 
minimally-implicit Runge-Kutta methods

   Stability analysis based on the same previous points:

· Finite values for very high values of the effective conductivity.

· Recovery of ideal limit.

· Recovery of PIRK method for explicit part.



  

· Linear stability analysis for infinite conductivity:

(i) additional simplification.

(ii) one eigenvalue set to zero.

(iii) the second eigenvalue bounded by 1 in absolute value for any velocity 
in a stable way.

(iv) the second eigenvalue is minimum with respect to the remaining 
coefficient.

Alternative approach: 
minimally-implicit Runge-Kutta methods



  

First numerical simulations

Evolution of magnetic and electric field.
Charge computed from divergence of electric field.

Finite differences, equally spaced grid and cartesian coordinates.
CFL factor = 0.8

Constant velocity components and conductivity.

Set up for initial data:

Can be 
choosen to 

be zero



  

Both explicit and implicit methods works fine if conductivity is 
not very high, resolution is not very small or velocity is zero.



  



  

Conclusions:

- Simple first and second order schemes, minimizing the implicit 
parts. Only conserved variables are included in these terms. 
Analytical trivial inversion of the operators.

- Stability conditions close to ideal limit are used to select values 
for the coefficients. No need of iterative schemes on each stage 
(apart from recovery), effective time-step.

- First numerical simulations. Future more complex ones.

- Comparison with other approaches: well-balanced methods.

Thanks for your attention... next time hopefully more movies!!


