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Outline:

- Motivation and structure of the relativistic resistive
magnetohydrodynamic equations.

- IMEX Runge-Kutta methods: high computational cost.

- Derivation of the new schemes: first and second-order
methods.

- First numerical simulations.

- Conclusions and future plans.



Motivations for considering the non-ideal magnethohydrodynamic (MHD)
equations (see A. Christlieb's talk yesterday):

-+ Significant magnetic field in some astrophysical scenarios: active
galactic nuclei, quasars, compact objects, dolls relativistes, accretion
disks...

- Numerical simulations in the ideal case: effects coming from the
numerical error and numerical resistivity (dependence on the numerical
method and resolutions used), physical resistivity is not modeled
consistently.

-~ High resolution shock capturing methods for capturing shock waves
and rarefaction waves.

-+ Hyperbolic evolution equations + constraint equations (zero divergence
of magnetic field).
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Constraint violations decay exponentially and propagate at speed of light.

Augmented evolution system for the new set of conserved variables
[Komissarov, 2007].
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- Conserved and primitive variables (geometric units):

— 4= {0 B'. 4, E'.q, (pW), e, Pé} ] Definition of

Recovery , _ | | conserved
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The Lorentz factor is defined in terms of primitive variables: ' = (1 — -a_*gj_lfg

- System of equations: ]
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IMEX Runge-Kutta methods

The presence of stiff source terms needs an implicit treatment of the
source term or part of the source term.

A hyperbolic equation with a relaxation term has the form:

_ 1
0,U = F(U) + =R(U)
€

R(U) has no derivatives with respect to the variable U (source term).
Potential stiff source term for At < ¢.

Previously used methods:
- Strang-splitting method.
- [Palenzuela, Lehner, Reula, Rezzolla (2009)] IMEX Runge-Kutta methods:
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Ry(X.Y) = A(Y)X + Sy (Y)



IMEX Runge-Kutta methods
[Palenzuela, Lehner, Reula, Rezzolla (2009)] IMEX Runge-Kutta methods:

-+ Succesfully used in several numerical experiments: Afvén waves with high
amplitude and high conductivity to get similar results with respect to the ideal
case; broad range of values for the conductivity in shock tubes; neutron star

with magnetic field.

Figure 8. Magnetic field components B, (lefi-hand panel) and B, (right-hand panel) for the cylindncal explosion test at time { = 4.

-~ The implicit part involves the Lorentz factor, defined in terms of primitive
variables (components of the velocitiy field).

-+ Computationally expensive: reconstruction of variables implemented in each
time-step, nested iterative loops for recovery of primitive variables without

guarantee of convergence.



Alternative approach:
minimally-implicit Runge-Kutta methods
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Alternative approach:
minimally-implicit Runge-Kutta methods

Stability analysis based on:

- Finite values for very high values of the effective conductivity.
(1 _ C‘l) % 0 (1 —C1 + 'l-’2|-n-(c3 - l)) # 0

- Recovery of ideal limit.

- Wave-like behaviour between magnetic and electric fields — recovery of
PIRK method for explicit part.

Co = 0
- Linear stability analysis for infinite conductivity: additional simplification +

one eigenvalue set to zero for any velocity (dependence of electric field on
the rest of the variables).

ca =1 cp =0

- The other eigenvalue is bounded by 1 in absolute value for any velocity.



Alternative approach:
minimally-implicit Runge-Kutta methods

First-order method:
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Explicit scheme with an effective time-step: At/(1+5)

Second-order method: two-stages method.
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Alternative approach:

minimally-implicit Runge-Kutta methods

Second-order method: two-stages method.
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Alternative approach:
minimally-implicit Runge-Kutta methods
Stability analysis based on the same previous points:

- Finite values for very high values of the effective conductivity.

(1—c1)Z0; (1—cp+v%u(c5—1)) #0:
(c1/2—cy) #0; (e1/2—cq— 1..!2\(1}({33/2 —cg)) 7 0.

- Recovery of ideal limit.

- Recovery of PIRK method for explicit part.
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Alternative approach:
minimally-implicit Runge-Kutta methods

- Linear stability analysis for infinite conductivity:

(i) additional simplification.

g = 1, Cg — 1/2

(ii) one eigenvalue set to zero.
(1—¢p)?
21”."1

c17£70, cq4=

(iii) the second eigenvalue bounded by 1 in absolute value for any velocity
in a stable way.
c1 < 0

(iv) the second eigenvalue is minimum with respect to the remaining

coefficient.
= —1/V/2



First numerical simulations

Evolution of magnetic and electric field.
Charge computed from divergence of electric field.

Finite differences, equally spaced grid and cartesian coordinates.
CFL factor = 0.8

Constant velocity components and conductivity.

Set up for initial data:
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Both explicit and implicit methods works fine if conductivity is
not very high, resolution is not very small or velocity is zero.
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Conclusions:

- Simple first and second order schemes, minimizing the implicit
parts. Only conserved variables are included in these terms.
Analytical trivial inversion of the operators.

- Stability conditions close to ideal limit are used to select values
for the coefficients. No need of iterative schemes on each stage
(apart from recovery), effective time-step.

- First numerical simulations. Future more complex ones.

- Comparison with other approaches: well-balanced methods.

Thanks for your attention... next time hopefully more movies!!



